193 research outputs found

    Microsatellite instability analysis in hereditary non-polyposis colon cancer using the Bethesda consensus panel of microsatellite markers in the absence of proband normal tissue

    Get PDF
    BACKGROUND: Hereditary non-polyposis colon cancer (HNPCC) is an autosomal dominant syndrome predisposing to the early development of various cancers including those of colon, rectum, endometrium, ovarium, small bowel, stomach and urinary tract. HNPCC is caused by germline mutations in the DNA mismatch repair genes, mostly hMSH2 or hMLH1. In this study, we report the analysis for genetic counseling of three first-degree relatives (the mother and two sisters) of a male who died of colorectal adenocarcinoma at the age of 23. The family fulfilled strict Amsterdam-I criteria (AC-I) with the presence of extracolonic tumors in the extended pedigree. We overcame the difficulty of having a proband post-mortem non-tumor tissue sample for MSI testing by studying the alleles carried by his progenitors. METHODS: Tumor MSI testing is described as initial screening in both primary and metastasis tumor tissue blocks, using the reference panel of 5 microsatellite markers standardized by the National Cancer Institute (NCI) for the screening of HNPCC (BAT-25, BAT-26, D2S123, D5S346 and D17S250). Subsequent mutation analysis of the hMLH1 and hMSH2 genes was performed. RESULTS: Three of five microsatellite markers (BAT-25, BAT-26 and D5S346) presented different alleles in the proband's tumor as compared to those inherited from his parents. The tumor was classified as high frequency microsatellite instability (MSI-H). We identified in the HNPCC family a novel germline missense (c.1864C>A) mutation in exon 12 of hMSH2 gene, leading to a proline 622 to threonine (p.Pro622Thr) amino acid substitution. CONCLUSION: This approach allowed us to establish the tumor MSI status using the NCI recommended panel in the absence of proband's non-tumor tissue and before sequencing the obligate carrier. According to the Human Gene Mutation Database (HGMD) and the International Society for Gastrointestinal Hereditary Tumors (InSiGHT) Database this is the first report of this mutation

    Meta-analysis of exome array data identifies six novel genetic loci for lung function [version 1; peer review:1 approved, 1 approved with reservations]

    Get PDF
    Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and the ratio of FEV1 to FVC (FEV1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P&lt;2‱8x10 -7 ) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs (SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.</p

    Studies on p53, BAX and Bcl-2 protein expression and microsatellite instability in stage III (UICC) colon cancer treated by adjuvant chemotherapy: major prognostic impact of proapoptotic BAX

    Get PDF
    We evaluated the expression patterns of proapoptotic BAX, antiapoptotic Bcl-2 and p53, the proposed upstream effector of these molecules, as potential prognostic markers in UICC stage III colon cancer by immunohistochemical staining. To identify high-frequency microsatellite instability (MSI+) individuals, we performed single-strand conformation polymorphism-based analysis for BAT26. A total of 188 patients who had received 5-fluorouracil (5-FU)-based adjuvant chemotherapy (5-FU/folinic acid or 5-FU/levamisole) were enrolled. Median follow-up was 84.5 months. We found that BAX, Bcl-2 and p53 protein expressions were high or positive in 59, 70 and 50% of 188 cases, respectively. MSI+ tumours were detected in 9% of 174 evaluable patients. BAX or Bcl-2 was correlated with a higher degree of differentiation or left-sided tumours (P=0.01 or P=0.03, respectively); MSI was correlated with right-sided tumours (P<0.0001). In contrast to p53, Bcl-2, or MSI, low BAX, advanced pN category, low grade of differentiation and treatment with 5-FU/levamisole were univariately associated with poorer disease-free survival (DFS) (P=0.0005, P=0.001, P=0.005 and P=0.01, respectively) and poorer overall survival (OS) (P=0.002, P=0.0001, P=0.003 and P=0.02, respectively). Besides pN category and treatment arm, BAX was an independent variable related to both OS and DFS (P=0.003 and P=0.001, respectively). In both univariate and multivariate analysis, the p53−/BAX high in comparison with the p53+/BAX high subset conferred a significantly improved DFS (P=0.03 and P=0.03, respectively) as well as a marginally improved OS (P=0.07 and P=0.08, respectively). BAX protein expression may be of central significance for clinical outcome to 5-FU-based adjuvant chemotherapy in stage III colon cancer, and bivariate analysis of p53/BAX possibly may provide further prognostic evidence

    The roles of temperature, nest predators and information parasites for geographical variation in egg covering behaviour of tits (Paridae)

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. Abstract Aim Nest building is widespread among animals. Nests may provide receptacles for eggs, developing offspring and the parents, and protect them from adverse environmental conditions. Nests may also indicate the quality of the territory and its owner and can be considered as an extended phenotype of its builder(s). Nests may, thus, function as a sexual and social signal. Here, we examined ecological and abiotic factors—temperature, nest predation and interspecific information utilization—shaping geographical variation in a specific nest structure—hair and feather cover of eggs—and its function as an extended phenotype before incubation in great (Parus major) and blue tits (Cyanistes caeruleus) across Europe. We also tested whether egg covering is associated with reproductive success of great tits. Location Fourteen different study sites and 28 populations across Europe. Taxon Parus major, Cyanistes caeruleus. Methods We recorded clutch coverage estimates and collected egg covering nest material from the tit nests. We also measured nest specific breeding parameters and phenotypic measurements on adults. We tested whether mean spring temperatures, nest predation rates and flycatcher (Ficedula spp) densities in the study areas explain the large‐scale geographical variation of clutch coverage and reproductive success of tits. Results The degree of egg coverage of great tits increased with lower mean spring temperature, higher nest predation rate and higher flycatcher density. We did not find egg covering of blue tits to be associated with any of the ecological or abiotic factors. Moreover, egg covering of great tits was not associated with reproductive success in our cross‐sectional data, yet a rigorous assessment of fitness effects would require long‐term data. Main conclusions Our findings suggest that, in great tits, egg covering may simultaneously provide thermal insulation against cold temperatures during egg‐laying in spring and also represent a counter‐adaptation to reduce information parasitism by flycatchers and nest predation. Hence, geographical variation in interspecific interactions, and consequently in co‐evolutionary processes, may affect the evolution of nest characteristics besides environmental conditions.Biotieteiden ja YmpĂ€ristön Tutkimuksen ToimikuntaAgencia Estatal de InvestigaciĂłn, Ministry of Economy, Industry and Competitiveness, Spanish Research Council

    Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32330 subjects from the International Cannabis Consortium

    Get PDF
    Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences. Individual differences in cannabis initiation are heritable (40-48%). The International Cannabis Consortium was established with the aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts (N=32 330) and four replication samples (N=5627). In addition, we performed a gene-based test of association, estimated single-nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index, processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use. Furthermore, we showed that, combined across the genome, all common SNPs explained 13-20% (P<0.001) of the liability of lifetime cannabis use. Finally, there was a strong genetic correlation (rg=0.83; P=1.85 × 10(-8)) between lifetime cannabis use and lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use

    Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32330 subjects from the International Cannabis Consortium

    Get PDF
    Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences. Individual differences in cannabis initiation are heritable (40-48%). The International Cannabis Consortium was established with the aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts (N=32 330) and four replication samples (N=5627). In addition, we performed a gene-based test of association, estimated single-nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index, processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use. Furthermore, we showed that, combined across the genome, all common SNPs explained 13-20% (P&lt;0.001) of the liability of lifetime cannabis use. Finally, there was a strong genetic correlation (rg=0.83; P=1.85 × 10(-8)) between lifetime cannabis use and lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use.</p

    Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence.

    Get PDF
    Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes
    • 

    corecore